博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Kafka如何保证消息不丢失不重复
阅读量:5229 次
发布时间:2019-06-14

本文共 4017 字,大约阅读时间需要 13 分钟。

转载:https://blog.csdn.net/matrix_google/article/details/79888144
首先要考虑这么几个问题:
消息丢失是什么造成的,从生产端和消费端两个角度来考虑
消息重复是什么造成的,从生产端和消费端两个角度来考虑
 
如何保证消息有序
如果保证消息不重不漏,损失的是什么
 
下面是文章详情,这里先简单总结一下:
消费端重复消费:很容易解决,建立去重表
消费端丢失数据:也容易解决,关闭自动提交offset,处理完之后受到移位
生产端重复发送:这个不重要,消费端消费之前从去重表中判重就可以
生产端丢失数据:这个是最麻烦的情况
解决策略:
1.异步方式缓冲区满了,就阻塞在那,等着缓冲区可用,不能清空缓冲区
2.发送消息之后回调函数,发送成功就发送下一条,发送失败就记在日志中,等着定时脚本来扫描
(发送失败可能并不真的发送失败,只是没收到反馈,定时脚本可能会重发)
如何保证有序:
如果有一个发送失败了,后面的就不能继续发了,不然重发的那个肯定乱序了
生产者在收到发送成功的反馈之前,不能发下一条数据,但我感觉生产者是一个流,阻塞生产者感觉业务上不可行,怎么会因为一条消息发出去没收到反馈,就阻塞生产者
同步发送模式:发出消息后,必须阻塞等待收到通知后,才发送下一条消息
异步发送模式:一直往缓冲区写,然后一把写到队列中去
两种都是各有利弊:
同步发送模式虽然吞吐量小,但是发一条收到确认后再发下一条,既能保证不丢失消息,又能保证顺序
============================下面是原文====================================
Kafka消息保证生产的信息不丢失和重复消费问题
1)使用同步模式的时候,有3种状态保证消息被安全生产,在配置为1(只保证写入leader成功)的话,如果刚好leader partition挂了,数据就会丢失。
2)还有一种情况可能会丢失消息,就是使用异步模式的时候,当缓冲区满了,如果配置为0(还没有收到确认的情况下,缓冲池一满,就清空缓冲池里的消息),
数据就会被立即丢弃掉。
在数据生产时避免数据丢失的方法:
只要能避免上述两种情况,那么就可以保证消息不会被丢失。
1)就是说在同步模式的时候,确认机制设置为-1,也就是让消息写入leader和所有的副本。
2)还有,在异步模式下,如果消息发出去了,但还没有收到确认的时候,缓冲池满了,在配置文件中设置成不限制阻塞超时的时间,也就说让生产端一直阻塞,这样也能保证数据不会丢失。
在数据消费时,避免数据丢失的方法:如果使用了storm,要开启storm的ackfail机制;如果没有使用storm,确认数据被完成处理之后,再更新offset值。低级API中需要手动控制offset值。
消息队列的问题都要从源头找问题,就是生产者是否有问题。
讨论一种情况,如果数据发送成功,但是接受response的时候丢失了,机器重启之后就会重发。
重发很好解决,消费端增加去重表就能解决,但是如果生产者丢失了数据,问题就很麻烦了。
数据重复消费的情况,如果处理
(1)去重:将消息的唯一标识保存到外部介质中,每次消费处理时判断是否处理过;
(2)不管:大数据场景中,报表系统或者日志信息丢失几条都无所谓,不会影响最终的统计分析结
Kafka到底会不会丢数据(data loss)? 通常不会,但有些情况下的确有可能会发生。下面的参数配置及Best practice列表可以较好地保证数据的持久性(当然是trade-off,牺牲了吞吐量)。笔者会在该列表之后对列表中的每一项进行讨论,有兴趣的同学可以看下后面的分析。
没有银弹,如果想要高吞吐量就要能容忍偶尔的失败(重发漏发无顺序保证)。
block.on.buffer.full = true
acks = all
retries = MAX_VALUE
max.in.flight.requests.per.connection = 1
使用KafkaProducer.send(record, callback)
callback逻辑中显式关闭producer:close(0) 
unclean.leader.election.enable=false
replication.factor = 3 
min.insync.replicas = 2
replication.factor > min.insync.replicas
enable.auto.commit=false
消息处理完成之后再提交位移
给出列表之后,我们从两个方面来探讨一下数据为什么会丢失:
1. Producer端
  目前比较新版本的Kafka正式替换了Scala版本的old producer,使用了由Java重写的producer。新版本的producer采用异步发送机制。KafkaProducer.send(ProducerRecord)方法仅仅是把这条消息放入一个缓存中(即RecordAccumulator,本质上使用了队列来缓存记录),同时后台的IO线程会不断扫描该缓存区,将满足条件的消息封装到某个batch中然后发送出去。显然,这个过程中就有一个数据丢失的窗口:若IO线程发送之前client端挂掉了,累积在accumulator中的数据的确有可能会丢失。
  Producer的另一个问题是消息的乱序问题。假设客户端代码依次执行下面的语句将两条消息发到相同的分区
producer.send(record1);
producer.send(record2);
如果此时由于某些原因(比如瞬时的网络抖动)导致record1没有成功发送,同时Kafka又配置了重试机制和max.in.flight.requests.per.connection大于1(默认值是5,本来就是大于1的),那么重试record1成功后,record1在分区中就在record2之后,从而造成消息的乱序。很多某些要求强顺序保证的场景是不允许出现这种情况的。
发送之后重发就会丢失顺序
  鉴于producer的这两个问题,我们应该如何规避呢??对于消息丢失的问题,很容易想到的一个方案就是:既然异步发送有可能丢失数据, 我改成同步发送总可以吧?比如这样:
producer.send(record).get();
这样当然是可以的,但是性能会很差,不建议这样使用。因此特意总结了一份配置列表。个人认为该配置清单应该能够比较好地规避producer端数据丢失情况的发生:(特此说明一下,软件配置的很多决策都是trade-off,下面的配置也不例外:应用了这些配置,你可能会发现你的producer/consumer 吞吐量会下降,这是正常的,因为你换取了更高的数据安全性)
block.on.buffer.full = true  尽管该参数在0.9.0.0已经被标记为“deprecated”,但鉴于它的含义非常直观,所以这里还是显式设置它为true,使得producer将一直等待缓冲区直至其变为可用。否则如果producer生产速度过快耗尽了缓冲区,producer将抛出异常。缓冲区满了就阻塞在那,不要抛异常,也不要丢失数据
acks=all  很好理解,所有follower都响应了才认为消息提交成功,即"committed"
retries = MAX 无限重试,直到你意识到出现了问题
max.in.flight.requests.per.connection = 1 限制客户端在单个连接上能够发送的未响应请求的个数。设置此值是1表示kafka broker在响应请求之前client不能再向同一个broker发送请求。注意:设置此参数是为了避免消息乱序
使用KafkaProducer.send(record, callback)而不是send(record)方法   自定义回调逻辑处理消息发送失败,比如记录在日志中,用定时脚本扫描重处理
callback逻辑中最好显式关闭producer:close(0) 注意:设置此参数是为了避免消息乱序(仅仅因为一条消息发送没收到反馈就关闭生产者,感觉代价很大)
unclean.leader.election.enable=false   关闭unclean leader选举,即不允许非ISR中的副本被选举为leader,以避免数据丢失
replication.factor >= 3   这个完全是个人建议了,参考了Hadoop及业界通用的三备份原则
min.insync.replicas > 1 消息至少要被写入到这么多副本才算成功,也是提升数据持久性的一个参数。与acks配合使用
保证replication.factor > min.insync.replicas  如果两者相等,当一个副本挂掉了分区也就没法正常工作了。通常设置replication.factor = min.insync.replicas + 1即可
2. Consumer端
  consumer端丢失消息的情形比较简单:如果在消息处理完成前就提交了offset,那么就有可能造成数据的丢失。由于Kafka consumer默认是自动提交位移的,所以在后台提交位移前一定要保证消息被正常处理了,因此不建议采用很重的处理逻辑,如果处理耗时很长,则建议把逻辑放到另一个线程中去做。为了避免数据丢失,现给出两点建议:
enable.auto.commit=false  关闭自动提交位移
在消息被完整处理之后再手动提交位移

转载于:https://www.cnblogs.com/StarsBoy/p/10039143.html

你可能感兴趣的文章
python升级安装后的yum的修复
查看>>
Vim配置Node.js开发工具
查看>>
web前端面试题2017
查看>>
ELMAH——可插拔错误日志工具
查看>>
MySQL学习笔记(四)
查看>>
【Crash Course Psychology】2. Research & Experimentation笔记
查看>>
两数和
查看>>
移动设备和SharePoint 2013 - 第3部分:推送通知
查看>>
SOPC Builder中SystemID
查看>>
MySQL数据库备份工具mysqldump的使用(转)
查看>>
青海行--(7月19日)麦积山石窟
查看>>
NTP服务器配置
查看>>
【转】OO无双的blocking/non-blocking执行时刻
查看>>
深入理解java集合框架(jdk1.6源码)
查看>>
php截取后台登陆密码的代码
查看>>
选假球的故事
查看>>
ul li剧中对齐
查看>>
关于 linux 的 limit 的设置
查看>>
模块搜索路径
查看>>
如何成为一名优秀的程序员?
查看>>